
REPORT DOCUMENTATION PAGE
horm approved

OMB No 0704-0188

■JO'" '"DO't" ■ >jr orr -'■SOO-'V

• .V.,s*""l' '• .ifJQu.i

^"l.om'.l In»* '"->*• ,'1' " »^-■'"t <"V!'<J'tirtf>\. y*4r'n.nr] f«i\t<nc) Orfl* *our.»\.
■ - >mi , '.mm«nt\ f»i V? 'T f^ Dud'" «*''mJtK> O' '*W .|h*' -»\Ofrt 0» This
,..»,,...% i,,ii»'-Jf.1if '■ • -•' '— (VOn 0D»'-MITH ""<! "«-OU'tS. W IS i^ff^fVOn
<n»f«r>r. «^<)ii.ti'.f ■"• •■• T/.'.-.O'HH) vVJih-'itO" .<<■ /ISO)

1. AGENCY USE ONLY (Ledve b/dn«; 2. REPORT DATE

January, 1997
3. REPORT TYPE AND OATES COVERED

Final March 1993 - December 1996

4. TITLE AND SUBTITLE

ForMAT and Parka: A Technology Integration Experiment
and Beyond

6. AUTHOR(S)

James A. Hendler, Kilian Stoffel, Alice Mulvehill

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland
Department of Computer Science
AV Williams Building
College Park, MD 20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Navy
Office of Naval Research
Resident Representative
101 Marietta Tower, Suite 3805, Atlanta, GA 30303

5. FUNDING NUMBERS

F3060293C0039

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution unlimited

TTTT •■MCToiQiiTinN CODE

13. ABSTRACT (Maximum 200 words)
This report describes a Technology Integration Experiment between the University
of Maryland and Mitre Corp. which was undertaken as part of the (D)Arpa/Rome
Laboratory Planning Initiative (ARPI). This work led to an integration of the
UM Parka-DB tool into the Mitre ForMAT transportation planning tool. This work
also forms one of the cornerstones of the "Case-based Planning" cluster of the
current phase of the ARPI.

DTIC QUALITY B5SFSJSED 4

14. SUBJECT TERMS

Computers, Software, Artificial Intelligence, Planning

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

MSN 7S.-.0-01 :80-5sno

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

21
16. PRICE CODE

19970213 059

20. LIMITATION OF ABSTRACT

Unclassified
SMMd'il '-orm J9R iRev 2-89)

ForMAT and Parka: A technology integration
experiment and beyond

J. Hendler, K. Stoffel, and D. Rager
Computer Science Department

University of Maryland

Alice Mulvehill
Bolt BBN Systems k Technologies

Cambridge, MA.

February 10, 1997

Abstract

This report describes a Technology Integration Experiment (TIE)
between the University of Maryland and MITRE Corp. which was
undertaken as part of the (D)Arpa/Rome Laboratory Planning Ini-
tiative (ARPI). This work led to an integration of the UM Parka-DB
tool into the MITRE ForMAT transportation planning tool. This
work also forms one of the cornerstones of the "Case-based Planning"
cluster of the current phase of the ARPI.

1 Planning Background

In case-based planning (CBP), previously generated plans are stored as cases
in memory and can be reused to solve similar planning problems in the future.
CBP can save considerable time over planning from scratch (generative plan-
ning), thus offering a potential (heuristic) mechanism for handling intractable
problems. With our system, CaPER, we are currently developing new ap-
proaches to CBP. In particular, one drawback of CBP systems has been the

1

need for a highly structured memory that requires significant domain engi-
neering and complex memory preindexing schemes to enable efficient case
retrieval

In contrast, the CaPER CBP system uses the Parka high performance
knowledge representation system [9] to retrieve plans quickly from a large
memory that is not preindexed. Thus, it is relatively inexpensive to access
memory frequently, and memory can be probed flexibly at case retrieval time.
CaPER can issue a variety of queries that result in the retrieval of one or more
plans (or parts of plans) that can be combined to solved the target planning
problem. These plans can be merged and harmful interactions among them
resolved using annotations on a plan to capture interdependencies among its
actions [8, 7, 5, 9].

1.1 Transportation Logistics Planning

The United States Transportation Command (USTRANSCOM) is responsi-
ble for generating and maintaining the plans by which United States military
forces are deployed. This responsibility includes determining the transporta-
tion needs for missions short and long, small and very large. For large mis-
sions, the process by which these transportation plans are constructed can be
very complex and time consuming. Representatives from the various services
and commands involved in a plan must collectively decide how best to allo-
cate the limited transportation resources (aircraft, ships, trucks and trains)
to achieve the many military goals of the mission. The end result of this pro-
cess is an Operational Plan (OPLAN) which specifies where and when the
forces involved in a mission are to be moved. Associated with a OPLAN are
one or more Time Phased Force Deployment Data (TPFDD) which describe
what, when, and how the forces for a mission will be deployed. The OPLAN
and TPFDDs are stored and maintained until their execution is called for.
At that time, the plan will generally have to be modified to fit the particular
details of the current situation.

ForMAT (Force Management and Analysis Tool) provides an environment
in which a force development and planning specialist can view, modify, and
create the basic structures of TPFDDs (called force modules, or FMs). FMs
prescribe a force or set of forces that can be used to satisfy some planning
requirement. The FM is typically a grouping of combat, combat support, and
combat service support forces, and ranges in size from the smallest combat

element to the largest combat group. It may specify accompanying supplies
and the required movements, resupply, and personnel necessary to sustain
forces for a minimum of 30 days. The elements of a FM are linked together
so that they may be extracted from, or adjusted as, an entity to enhance the
flexibility and usefulness of a plan. One or more FMs for use in a given plan
are stored in a TPFDD. In theory, FMs form a library which can be drawn
upon to quickly build a new plan. In a crisis, new TPFDDs will be built, at
least in part, from FMs within one or more existing TPFDDs.

The force modules that compose TPFDDs are themselves composed of
smaller units called Unit Line Numbers (ULNs). A ULN identifies a force,
support for a force, or a portion of a force. A ULN is often described by its
Unit Type Code, which can span a wide range of items from tactical fighter
squadrons and army battalions to dog teams, or even a Catholic chaplain.
Finding appropriate ULNs (and therefore FMs) in previous TPFDDs is a
complex task, similar to case-retrieval in case-based planning.

2 High Performance Support for ForMAT

The integration of ForMAT and the University of Maryland system began
from a Technology Integration Experiment (TIE) which examined whether
the "structure matching" system developed for supporting the case-based
reasoning in CaPER could also handle retrieval in ForMAT. Before we de-
scribe this integration, we review the approach to structure matching in
CaPER and the parallel versions of the algorithms that provided the original
speedup needed to support a knowledge base as large as ForMAT required.
(Note that we eventually were able to support ForMAT on a single processor
using a data-based version of Parka. This work is described in Section 3.)

2.1 Representing structures for matching

Our description of the problem of structure matching follows that given in
[11]. A knowledge base defines a set, P, of unary and binary predicates.
Unary predicates have the form Pi(x) and binary predicates have the form
Pj(x-i,x2), where each X{ is a variable on the set of frames in the KB. An
existential conjunctive expression on these predicates is a formula of the
form 3zi,..., xm : Pi A P2A,..., APn, where n > 1. Our task is to retrieve

all structures from memory which match a given conjunctive expression.
Therefore, we would like to find all such satisfying assignments for the X{.

We can view the problem of matching knowledge structures in two ways.
The first is as a subgraph isomorphism problem *. We view variables as
nodes and binary predicates as edges in a graph. We want to find structures
in memory which "line up" with the graph structure of the query expression.
The other way to view the matching problem is as a problem of unification
or constraint satisfaction. If we can find a structure in memory which pro-
vides a consistent assignment to the variables Xi (i.e., unification), then that
structure matches the conjunctive expression.

2.1.1 Overview of the algorithm

The structure matching algorithm operates by comparing a retrieval probe,
P, against a knowledge base (KB) to find all structures in the KB which are
consistent with P. This match process occurs in parallel across the entire
knowledge base. A Parka KB consists of a set of frames and a set of relations
(defined by predicates) on those frames. Most relations are only implicitly
specified and so must be made explicit by expanding the relation with the
appropriate inference method. By computing inherited values for a relation,
all pairs defining the relation are made explicit. We currently allow only
unary and binary relations.

A retrieval probe is specified as a graph consisting of a set of variables
V(P) and a set of predicates (or constraints) C(P) that must simultaneously
hold on frames bound to those variables. The result of the algorithm is a set
of ^-tuples, where each &-tuple encodes a unique 1 — 1 mapping of frames
to variables in V(P), that unifies with the description of the structure in
memory with C(P). The set of frames that can bind to each variable is
initially restricted by a set of constraints indicated by unary predicates. Each
unary constraint may only constrain the values of one variable. Examples of
these constraints are "X is a dog" or "the color of X is yellow". We allow
set theoretic combinations of the unary constraints, for example UX is a dog
and the color of X is yellow", or UX is a dog but X is not yellow"2 The

1More specifically, this is a problem of Directed Acyclic Graph (DAG) isomorphism
with typed edges, the edges being the relations in the KB between frames.

2Variables in the query probe which do not appear in a unary constraint are treated
differently. Variables not contained in a unary constraint are still able to be constrained by

domains for each variable are maintained throughout the match process and
are further restricted as more constraints are processed.

Constraints between frames bound to variables are specified by a set of
binary constraints. For example, we can say "the color of X must be Yn,
or "X is a part of F", for some X and Y in V(P). Binary constraints are
processed by "expanding" the binary relation given in the constraint. By
expansion we mean that all pairs participating in a relation R in the KB are
made explicit by invoking the inference method for the associated predicate.
The pairs allowed to participate in the expanded relation are restricted to
those in the domains of the variables related by R. For example, a binary
constraint may be expressed as (Color X Y). In this case the values for
each concept in the domain of X are computed for the color predicate and
pairs that have values outside the domain of Y are excluded. Two additional
binary predicates, "eq" and "neq" are provided to provide codesignation and
non-codesignation of variables. These constraints act as a filter, eliminating
any tuples from the result for which the constrained variables are(not) bound
to the same frame.

The result of a structure match is a set of fc-tuples, where each tuple
corresponds to a satisfying assignment of the k variables. Alternatively, the
result can be viewed as a relation. Initially, the matcher begins with an
empty set of relations. During the match, several intermediate relations may
be constructed. Simple binary relations result from the expansion of a binary
constraint. These are later fused (via a relational join operation) or filtered
(via codesignation or non-codesignation) until a single relation remains. The
algorithm selects binary constraints to process using a greedy algorithm based
on a simple cost model stored in the metadata.

2.1.2 Testing Structure Matching Queries

At the time of the first experiments between CaPER and ForMAT, we had
just completed a migration from a CM-2 SIMD implementation of Parka to a
MIMD implementation running on a number of supercomputers including an
IBM SP2, a CRAY T3D and several other machines. One domain for testing
the MIMD implementation was on knowledge bases that were created as
part of doctoral thesis work on the CAPER system itself [8, 7]. Part of this

intersecting the instances of the range and domain of the predicates in binary constraints
in which the variable appears.

project involved the automatic seeding of large case memories by a generative
planner. One domain used in this work was the "UM Translog" domain,
a logistics planning domain developed for the evaluation and comparison
of AI planning systems. Case-bases of various size were created, and each
contains a number of plans, derivation information, and planning related
ontologies.3 To measure the performance of the structure matcher we used
the UM-Translog KB in different sizes (20 cases, 100 cases and 200 cases).

The results, which we review briefly in this section, were interesting for
two reasons. On the one hand, they showed that we could clearly scale
our algorithms to extremely large knowledge bases (as far as we know the
200 case CaPER case base, which contained over 1.6 million assertions, was
the largest meaningful semantic network ever created at the time of these
experiments.) More importantly, we showed that the reimplemented system
had the capability to handle these large KBs on a single Sparc workstation
as well as on the faster machines.

As the CaPER planning system solved a problem, we stored all the queries
that were generated. For testing the parallel system we chose several queries
at random from a large number of stored queries. The results are summarized
in Table 1. Table la presents the timings for six typical queries on a single
processor SPARC 20 using the three different KBs. Table lb presents the
timings on 1, 8 and 16 nodes of an SP2 using the 200 case KB (the largest
of the three). The actual sizes of these KBs are shown in Table 2, where
frames is the number of nodes in the DAG, structural links are those in the
ISA ontology, and property links are all others (i.e. the number of the edges
in the DAG is equal to the structural links plus the property links).

As can be seen, the sequential timings range from under a second for
the simplest query to about 7 seconds for the most complex. On the parallel
system all queries were executed in under one second, with the simplest query
taking only 29 milliseconds on 16 processors, and the most complex taking
only 303 milliseconds. Table lb also shows the efficiencies of the parallel
algorithm - the efficiency averaged about 69.3% for eight processors and
59.9% for 16 processors.

3A full description of the domain, the complete specification of the planning op-
erators used, and the case-bases themselves are available on the World-Wide Web at
http:/'/www. cs. umd. edu/projects/plus/UMT/.

Query 20 CB 100 CB 200 CB

1 1020 4740 6990

2 195 1305 1635

3 225 1470 1725

4 630 3570 4590

5 675 3600 4605

6 405 585 645

Query 1 8 16 1:8 1:16

1 3041 546 313 69.6 60.7

2 713 129 75 69.1 59.4

3 753 135 79 70.0 56.6

4 1997 361 205 69.1 60.9

5 2003 360 206 69.5 60.8

6 284 52 29 68.2 61.2

a: Timings (milliseconds) on a b: Timings (milliseconds) on a 1, 8
SPARC 20 for a 20, 100 and 200 cases and 16 nodes of an SP2 on 200 case

KB KB

Table 1: UM-Translog Timings (serial and parallel).

cases frames structural links property links

20

100

200

11612

59915

123173

26412

130558

266176

114359

800481

1620456

Table 2: Sizes of the UM-Translog KBs.

3 Integrating ForMAT and PARKA
Based on the results reported above, it was clear that Parka, the inference engine
that supports CaPER, could scale to the needs of ForMAT. In addition, based on
our successes in the creation of the single processor version, we focused our effort
on the design of a new version which would optimize single-processor performance
using a database system to provide both efficiency and scalability. The resulting
system, PARKA-DB was used in the actual support of ForMAT described below.
(For convenience we drop the "DB" and refer to the system by the original name
"PARKA" in the remainder of this report.)

3.1 TPFDD Casebase.
Initially, we encoded one of the ForMAT casebases into the PARKA knowledge
representation system. MITRE provided the casebase of TPFDDs, and at UMCP
a program was written to recode it into the database tables used by PARKA. The
casebase contains 15 TPFDDs, consisting of a total of 319 FMs and about 14,000
ULNs. The corresponding PARKA knowledge base consists of 54,580 frames,
31,314 structural links, and 607,750 assertions. In addition, a domain-specific
ontology was created containing approximately 1,200 frames for domain concepts
such as "FM", "ULN", service branch, capabilities, functions, geographic locations,
etc. Frames in the base ontology are organized in an abstraction ("is-a") hierarchy.

The initial casebase was tested using a graphical interface front end to PARKA
(see Figure 1). Through this testing we developed the base ontology and ensured
that the PARKA casebase could handle the retrieval tasks required by ForMAT.
Two addition features were added to PARKA to support ForMAT queries, string
matching and variable restrictions. String matching provides the ability to search
for values that contain a substring, such as searching for a description string that
contains the substring "dog." Variable restrictions allow the user to restrict results
to a set of values. In ForMAT it is used to restrict the search space of a query to
a specific set of FMs instead of the entire casebase.

3.2 How ForMAT uses PARKA.
PARKA was designed as a knowledge base with a simple application program
interface (API). Any program that conforms to the API can use the PARKA back-
end. The PARKA browsing and quering tools are a graphical interface front-end
accessing the PARKA back end using the same API. Code was added to ForMAT
to allow it to access PARKA using the API. By conforming to the PARKA API,

SJiKi -.■r.tolM^y-lj. «|

(7FM I500T2-
C?FH I50ÖT2-
(TFH 1500T2-
(7FM I500T2-
(1FM 150OT2-
(?FH I50OT2-
(7FH I500T2-
(Tffl I50OT2-

1BD)(?ULN
1BD)(?ULN
1BD)(7ULH
IBB)(7ULH
1BD) (TON
1BD)C7ULH

■3BD) C7ULK
■3BD) (TULH

500T2-K2B7P)(70RG-CC 08)(?0RG
50CfT2-K2B7C) (70RG-CC 08)(70RG
500T2-O*P)(70RG-CC 08)(70RG
500T2-K2ARC)(?ORG-CC 08)(70RG

!5O0T2-K2flCP>(?0RG-CC 08)(?0RG
!500T2-K2fCC)(?0RGHX 08){?ORG
1500T2-K3B8P)(70R&-CC 08)(7DRG
[5QCfT2-K2B8C)(?0RG-CC 03)(?ORG

I COLORADO)
!COLORADO)
I COLORADO)
I COLORADO)
!COLORADO)
ICOLORftDO)
I COLORADO)
! COLORADO)

I'iTK 1500T2-1EBE:=::^WPHIC-L0CFITI0N 1 iSftfOl-flRflBIfl]

I ""—SERVICE,,

\1\JLM 15Q0T5-K2B7CJ FUNCTION- -lil^ffffRV I

^TOTO {COLORADO]

Figure 1: An example of the PARKA front-end graphical representation of
a ForMAT query.

ForMAT can use any back-end version of PARKA, such as our recently developed
distributed version or any of the parallel versions, transparently to the user.

The ForMAT system from MITRE used a similar API to access its casebase
retrieval system. To integrate ForMAT and PARKA, the ForMAT casebase code
was removed and replaced by code to connect the two APIs. This code uses the
ForMAT query specification to create the PARKA query. Because ForMAT is
written in LISP and PARKA is in C, the LISP foreign function interface was used
to communicate between the two languages. Only six PARKA API functions need
to be called through the foreign function interface.

When a ForMAT user wants to search the casebase, they build a query using the
ForMAT FM Query interface. When the query is executed, the query is converted

into a PARKA query which is passed through the PARKA API to the back-end
where the retrieval is done. The results are passed back through the API to
ForMAT where they are displayed to the user.

ForMAT supports two types of retrieval, exact and general. An exact query
searches for FMs with specific features, while a general query searches for FMs
with similar but not necessarily exact features. An exact ForMAT query is very
much like a PARKA query. The ForMAT interface allows the user to specify
some FM and ULN features. These features are then converted into the binary
predicates used in the PARKA casebase. The query shown in figure 2 searches
for a force module with three features. The corresponding PARKA query includes
those features as binary predicates plus a predicate that specifies the object with
those features is a force module.

BExact Hatch
1 [General Hatch

HWCOOM SECURITT-POLICEI

GEUURAPHIC LUUAT1QN SRI-LM1K&|

Insert |

Eelctc |

SERVICE AK!Y|

M

Ryn.is |

lljpfdd |

!ta m

PARKA Query: "(FUNCTION ?FM !SECURITY-POLICE-INST)
(GEOGRAPHIC-LOCATION ?FM !SRI-LANKA-INST)(SERVICE ?FH !ARMY)
(instanceOf ?FM !FORCE-MODULE)"

Figure 2: An example of the ForMAT query window and a PARKA query.

For general queries, PARKA needs to perform multiple queries, each more
general than the previous one. For example, a query may look for FMs with a
geographic-location in Saudi Arabia. An exact match would only return FMs with
the exact value of Saudi Arabia. If no such FMs exist, none would be returned. A
general match would perform a second query if no FMs were found. The second
query would relax the constraints on geographic-location and search for any values
under Middle East in the base ontology. This generalization continues until some
results are found. Figure 3 shows a portion of the geographical hierarchy from
PARKA. Figure 4 shows a general query as created in ForMAT's FM Query window
and the PARKA queries generated by executing that query.

ForMAT also allows users to specify queries that include OR and NOT, but

10

Asia
— SE_Asia

— Burma
— Laos

Southern_Asia
— SriJLanka
— India

Eastern_Asia
— Korea_South
-Korea North

Figure 3: Part of the graphical hierarchy in ForMAT

Parka only does conjunctive queries. For disjunction, the query is converted into
multiple queries and the results are combined. (A and (B or C)) becomes the two
queries (A and B) and (A and C). NOT is handled by doing two queries, first the
query is done without the predicates within the NOT. The results are saved and
the query is done again to find the FMs to remove from the previous results. For
example (A AND (NOT B)) would become A set-difference (A AND B).

3.3 Comparisons

We used a set of 379 queries to compare the two retrieval methods. The queries
are actual ForMAT queries done by users during testing and military planning
exercises (taken from history files). The queries were run 10 times each as exact
queries and the times were averaged. Both methods returned the same FMs for
all queries.

The timing results are graphed in Figure 5. The speeds of the two methods
are roughly the same, with Parka having some advantage on larger queries. On
average, across the 379 cases, the PARKA results are 10ms faster than the original
ForMAT algorithm. Most of the queries take less than 100ms using either retrieval

11

" CM--. Uli.'. !

Quit \ i

SEMHAKIlt: IMMTIIM FJW|

semes K&VY) B7*S

PHKfl dueru: "(GEOGRAPHIC-LOCATION ?FM TGenVarl) (everuInstanceOf TGenVarl IHJRMA)
(SERVICE 7FM ! NfiW) (instance« ?FH ! FORCE-HOME)"

PARKfl Queru: "(GEOGRflPHIC-LOCATIDN ?FH TGsnVarl) (ereruInstancaOf ?GenVarl ISE-RSIA)
(SERVICE 1FM !NRW)(lnstancoOf IF« ! FORCE-MODULE)"

PARKA Query: "(GEOGRAPHIC-LOCATION ?FH TGenVarlHeverylnstanceOf TGenVarl !ASIA)
(SERVICE TfH INRVY) (Instance« 1FH ! FORCE-HODULE)"

Figure 4: An example of multiple PARKA queries generated from a general
query.

method. These are queries that only search FMs. The slower queries are ones that
also search for a ULN feature. ForMAT's algorithm is based on a linear search
algorithm that searches all the ULNs that belong to the FMs returned by th FM
part of the query. Depending on the query, a large number of ULNs (up to 14,000)
could be searched. The more FMs returned by the query, the better the PARKA
algorithm does in comparison to ForMAT search of all the ULNs.

One problem with these results is that the queries were very varied, and were
collected across many uses of ForMAT. However, the Parka algorithms were devel-
oped so that memory caching would provide a significant improvement on queries
which were related to each other as was expected would happen in a typical For-
MAT use. Therefore, for a more concise comparison, we needed a set of spe-
cific queries representing a "typical" use of ForMAT. MITRE provided a set of
queries for this purpose. In particular, as part of the Joint Warfare Interoperabil-
ity Demonstrations (JWID), ForMAT was integrated with the TARGET system.
One set of queries in this experiment had been particularly time-consuming for
ForMAT. Generating a query report for TARGET required 17 different searches
of the casebase with a wide range of queries including both FM and ULN queries.

The results showed that the FMs returned by the two systems were the same,
but PARKA was significantly faster than ForMAT. Figure 6 shows the results of
this test. The total time of the TARGET query is 73.9 seconds for ForMAT and
8.1 seconds for PARKA. Thus, we see that for this query set Parka is about 9 times
as fast as ForMAT alone. (In experiments ongoing at the time of this publication,
we have ported the new version of Parka to the SP2 and done some optimizations
for the TPFDD data. Current results show the parallel version of the TARGET

12

-PARKA
-ForMAT

| 4000 -

rvj * 10 oo o

"iff*1" - f """—]■■"■

Query Number

Figure 5: Graph of ForMAT and PARKA query times sorted by PARKA
times.

set running on an IBM SP2 over 100 times as fast as the original ForMAT.)
We are able to demonstrate from this experiment that PARKA does much

better at casebase queries that include ULN features. This is because including
the ULNs increases the search space from 319 FM structures to 319 FM plus 14,000
ULN structures. This shows that the PARKA algorithm will do better than the
ForMAT algorithm as the size of the casebase grows.

Although ForMAT and PARKA are fully integrated, there is still room for
improvement. Currently, PARKA only returns the names of the FMs that were
retrieved from the casebase. The LISP structures corresponding to these names are
then retrieved from a hash table of FMs. The time it takes to do this is included in
the PARKA timing results. A closer integration which allowed ForMAT to use the
data stored within the casebase would eliminate the need for the separate LISP
structures and improve the overall system performance.

13

I PARKA
■ ForMAT

IM , i in I ^ff I i I "™ ..1».
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

TARGET Query Part Number

Figure 6: Graph of ForMAT and PARKA query times for the parts of a
TARGET query.

4 Continuing Work

The integration of ForMAT and Parka is continuing as part of a Phase III ARPI
project. One significant improvement made recently is that an integration of the
Parka system and another UM system was exploited to allow ForMAT to be-
come significantly more interoperable with external data sources. In particular,
ForMAT users may find additional information such as aircraft and vehicle specifi-
cations, airport capacity, maps, or weather information helpful when creating new
TPFDDs. The HERMES system[10] was developed at the University of Mary-
land by VS Subrahmanian to provide for the semantic integration of different and
possibly heterogeneous information sources. We have added an interface to the
HERMES server to the ForMAT tool. Through a hierarchical menu the user has
access to a number of online factbooks, maps, and weather information. HERMES
returns a list of information sources that can be viewed in Netscape or a graphics
viewer. Figure 7 shows the integrated ForMAT/Parka/Hermes system in use for
a Bosnia scenario developed as part of the Phase III case-based planning cluster.

Currently, we are looking at implementing a new system which will be a suc-

14

<S>-LEFT - Edit; LfTT - Info; <C>-LIF1 - Moose Doc; MIO.I - Hfrro; <S>-MimLl - Knw Otaup; RIEBT - Hart.

Cmt« 1 frflw j »to | ur*j [lr.fo.TKlf I MODE = TUTORIAL

_J H*?*?*?

BispUy j yn QttBry, j .f5**^!1* Reports j Exit -fBflOfT | j

E9| EDI EHI ESSJg

reap SSI EHj HS! ra ra

aip ffli rai rai 531 BB

imp coal raj rai EBi ra

ana iSDi isa iss
i i. I

Army
An rj.--—
ttavy

«SJE/Spocial Fore»
Jttlttt

Struwr"'

Figure 7: The working prototype combines ForMAT's interface, Parka's in-
ference engine and Hermes access to web pages and graphics to provide a
unified system for case-based transportation planning.

cessor to ForMAT written to more completely exploit Parka's capabilities as well
as to greatly extend the coverage of the ForMAT. We currently plan that this
system will be jointly implemented by BBN and the University of Maryland with
the goal of transitioning the resulting system into military use.

5 Conclusion

We believe that the joint ForMAT/Parka system was one of the successful demon-
strations that the technology base for Arpa provides approaches that can be ex-
ploited by the military. The new version of ForMAT, via the integration of Parka,
is more capable, faster, and more usable than the earlier version. The Univer-
sity of Maryland team profited by use of real data and a specific knowledge base

15

to focus our optimization efforts on. The ForMAT system gained by use of this
new technology. Final experiments proved that the system had gained a signifi-
cant speedup (in the experiment with the Target query the integrated system was
nearly 10 times as fast as the unaugmented ForMAT system, more than 100 times
as fast in parallel). In addition, this effort is now continuing, with a joint tool un-
der development that is expected to surpass the original in speed, size and, most
importantly, functionality.

References

[1] Andersen, W., Evett, M., Hendler, J. and Kettler, B. "Massively Parallel
Matching of Knowledge Structures," in Massively Parallel Artificial Intelli-
gence, Kitano, H. and Hendler, J. (eds.), AAAI/MIT Press, 1994.

[2] Evett, M.P., Hendler, J.A., and Spector, L., "Parallel Knowledge Representa-
tion on the Connection Machine," Journal of Parallel and Distributed Com-
puting, 1994.

[3] M.P. Evett. PARKA: A System for Massively Parallel Knowledge Represen-
tation, Ph.D. thesis, Dept. of Computer Science, University of Maryland,
CoUege Park, 1994.

[4] Evett, M.P., Hendler, J.A., and Andersen, W.A., "Massively Parallel Support
for Computationally Effective Recognition Queries", Proc. Eleventh National
Conference on Artificial Intelligence, 1993.

[5] Hendler, J. High Performance Artificial Intelligence, Science, Vol. 265, Au-
gust, 1994.

[6] Lenat, D.B. and Guha, R.V., "Building Large Knowledge-Based Systems",
Addison Wesley, Reading, Mass., 1990.

[7] Kettler, B.P., Hendler, J.A., Andersen, W.A., Evett, M.P., "Massively Paral-
lel Support for Case-based Planning", IEEE Expert, Feb, 1994.

[8] Kettler, Brian "Case-based Planning with a High-Performance Parallel Mem-
ory," Doctoral Dissertation, Department of Computer Science, University of
Maryland, October, 1995.

[9] K. Stoffel, J. Hendler and J. Saltz, High Performance Support for Very Large
Knowledge Bases, Proc. Frontiers of Massively Parallel Computing, Feb, 1995
(Extended Abstract).

16

[10] VS Subrahmanian, Sibel Adali and Ross Emery, A Uniform Framework For
Integrating Knowledge In Heterogeneous Knowledge Systems, Proceedings of
the Eleventh IEEE International Conference of Data Engineering, March,

1995.

[11] Watanabe, L., and Rendell, L., "Effective Generalization of Relational De-
scriptions", AAAI Eighth National Conference on Artificial Intelligence, 1990.

Appendix A: List of publications resulting from
this contract

W. Andersen, M. Evett, J. Hendler, and B. Kettler "Massively Parallel
Matching of Knowledge Structures," in Parallel Artificial Intelligence,
Kitano, H. and Hendler, J. (eds.), AAAI/MIT Press, 1994 ii. (earlier ver-
sion in) Building and Knowledge Sharing, K. Fuchi and T. Yokio (eds),
Ohmsha Ltd., Tokyo Japan, 1994

K. Erol, J. Hendler, and D. Nau "A Critical Look at Critics in HTN Plan-
ning", Proc. International Joint Conference on Artificial Intelligence
(IJCAI-95), Montreal, Aug, 1995.

K. Erol, J. Hendler, and D. Nau, "UMCP: A sound and complete procedure
for HTN planning", Proc. of the 2nd International Conference on AI
Planning Systems, June, 1994.

M. Evett, W. Andersen and J. Hendler "Providing Computationally Effective
Knowledge Representation via Massive Parallelism," in Processing for AI,
L. Kanal, V. Kumar, H. Kitano and C. Suttner (eds.) Elsevier, 1994

M. Evett, J. Hendler, A. Mahanti, D. Nau PRA*: The SIMD Paralleliza-
tion of a Memory-Limited Heuristic Search Algorithm, J. Parallel and
Distributed Computing, 25(2), 1995.

M. Evett, J. Hendler and L. Spector, Parallel Knowledge Representation on
the Connection Machine, Journal of Parallel and Distributed Comput-
ing,22(2), 1994.

M. Evett,J. Hendler, and W. Andersen, "Massively Parallel Support for Com-
putationally Effective Recognition Queries," Proceedings of the Eleventh
National Conference on Artificial Intelligence (AAAI-93), AAAI Press,
Menlo Park, CA, 1993

M. Evett, W. Andersen and J. Hendler, "Massively Parallel Support for Ef-
ficient Knowledge Representation," Proceedings of the Thirteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-93), Morgan
Kaufmann, 1993.

17

J. Hendler, K. Stoffel and A. Mulvehill. High Performance Support for
Case-Based Planning Applications, in A. Täte (ed) Planning Technology,
MIT/AAAI Press, Menlo Park, CA., USA, May 1996

J. Hendler, "Types of Planning — can artificial intelligence yield insights
into prefrontal function?" in Boiler and Grafman (eds.) Frontal Lobes -
Annals of the New York Academy of Science, Vol 769, 1995 (p. 265-276).

J. Hendler, B. Kettler, W. Andersen, M. Evett, S. Kambhampati, and A.
Agrawala, "Masively Parallel Support for Case-Based Planning," . Arpa/Rome
Lab Knowledge-Based Planning and Scheduling Initiative, Morgan-Kaufmann,
CA, Feb. 1994.

J. Hendler,S. Kambhampati, L. Ihrig, S. Katukam, J. Chen, and A. Agrawala."Integrated
Approaches for improving the effectiveness of Plan Reuse," . Arpa/Rome
Lab Knowledge-Based Planning and Scheduling Initiative, Morgan-Kaufmann,
CA, Feb. 1994.

J. Hendler, Editorial: Experimental AI Systems, of Experimental and The-
oretical AI, 7(1-2), 1995.

J. Hendler,D. Musliner and R. Kohout, Supporting Intelligent Real-Time
Control: Dynamic Reaction on the Maruti Operating System, Proc. Is-
raeli Symposium on Artificial Intelligence, Jerusalem, Israel, Jan 1995.

J. Hendler, High Performance Artificial Intelligence, Vol 265, Aug 12, 1994.

J. Hendler, Artificial Intelligence: yesterday, today and tomorrow, Currents
in Modern Thought, World k I, Aug 1995.

L. Ihrig and S. Kambhampati. "Design and Implementa- tion of a Replay
Framework based on a Partial order Planner." Proc. National Conference
on Artificial Intelligence (AAAI-96), 1996.

L. Ihrig and S. Kambhampati. "Integrating Replay with EBL to improve
planning performance." Current trends in AI Planning, IOS Press, 1995.

L. Ihrig and S. Kambhampati. "Derivation Replay for Partial-order Plan-
ning," Proc. 12th Natl. Conf. on Artificial Intelligence (AAAI-94),
August 1994.

S. Katukam and S. Kambhampati. "Learning Explanation- based Search
control rules for partial-order planning," Proc. 12th Natl. Conf. on
Artificial Intelligence (AAAI- 94), August 1994.

S. Kambhampati, S. Katukam and Y. Qu. "Failure driven Dynamic Search
Control for Partial Order Planners: An Explanation-based approach",
Artificial Intelligence, July 1995.

S. Kambhampati, C. Knoblock and Q. Yang. Planning as Refinement Search:
A Unified framework for evaluating design tradeoffs in partial order plan-
ning. Artificial Intelligence. Special issue on Planning and Scheduling.
Vol. 76. No. 1-2, September 1995. pp. 167-238.

18

S. Kambhampati. Comparative analysis of Partial Order and HTN Planning.
SIGART Bulletin Special section on Evaluation of Plans, Planners and
Planning Agents. Vol. 6, No. 1, January, 1995. pp. 16-25.

S. Kambhampati and D.S. Nau, "On the nature and role of modal truth
criteria in planning", Artificial Intelligence, 1995.

S. Kambhampati, "Multi-Contributor Causal Structures for Planning: A
Formalization and Evaluation," Artificial Intelligence Vol. 69, No. 1-2,
pp. 235-278.

S. Kambhampati and S. Kedar, "A Unified Framework for Explanation-
Based Generalization of Partially Ordered and Partially Instantiated Plans,"
ASU CSE-TR-92-008, Artificial Intelligence, Vol 67, No. 2, June 1994.
pp. 29-70.

S. Kambhampati. "Refinement planning: Status and Prospectus" In Proc.
National Conference on AI, 1996.

S. Kambhampati. "AI Planning: A prospectus on theory and applications"
Position Statement,ACM Computing Surveys, Symposium on Artificial
Intelligence, September 1995.

S. Kambhampati and X. Yang. "On the role of Disjunctive representations
and Constraint Propagation in Refinement Planning" Proc. of Knowledge
Representation and Reason- ing, 1996.

S. Kambhampati, Formalizing Dependency Directed Back-tracking and Explanation-
based Learning in Refinement Search. Proc. National Conference on
Artificial Intelligence (AAAI-96), 1996.

S. Kambhampati, L. Ihrig and B. Srivastava. "A Candidate Set based analy-
sis of subgoal interactions in conjunctive goal planning." In Proceedings
of 3rd Intl. Conf. on AI Planning Systems, May 1996.

S. Kambhampati and B. Srivastava. "Universal Classical Planner: An Algo-
rithm for Unifying State-space and Plan- space Planning," Current trends
in AI Planning, IOS Press, 1995.

S. Kambhampati. "Admissible pruning strategies based on plan-minimality
for plan-space planning" Proc. 14th Intl. Joint Confernce on Artificial
Intelligence. August 1995.

S. Kambhampati. "Refinement Search as a unifying frame- work for an-
alyzing planning algorithms," Proc. 4th Intl. Conf. on Principles of
Knowledge Representation and Reasoning, May 1994.

S. Kambhampati. "Design Tradeoffs in partial order (plan-space) planning,"
Proc. 2nd Intl. Conf. on AI Planning Systems, June 1994.

S. Kambhampati and D.S. Nau. "On the nature of modal truth criteria in
planning," Proc. 12th Natl. Conf. on Artificial Intelligence (AAAI-94),
August 1994.

19

k'

S. Kambhampati. "On the Utility of Systematicity: Under-standing Trade-
offs between redundancy and commitment in partial-ordering planning,"
Proceedings of the 13th Intl. Joint Conf. on Artificial Intelligence, Cham-
berry, France.

B. Kettler, W. Andersen, J. Hendler, and M. Evett, Massively Parallel Sup-
port for Case-based Planning. IEEE Expert, February 1994

B. Kettler and J. Hendler, "Evaluating the CAPER Planning System," Proc.
Israeli Symposium on Artificial Intelligence, Jerusalem, Israel, Jan 1995.

B. Kettler, W. Andersen, M. Evett, and J. Hendler, "Massively Parallel
Support for a Case-based Planning System", In Proceedings of the Ninth
IEEE Conference on AI Applications, Orlando, Florida, March 1993.

V. Manikonda, J. Hendler and P.S. Krishnaprasad "Formalizing Behavior-
Based Planning for Nonholonomic Robots," Proc. International Joint
Conference on Artificial Intelligence (IJCAI-95), Montreal, Aug, 1995.

V. Manikonda, J. Hendler and P.S. Krishnaprasad "Formalizing "A Motion
Description Language and a Hybrid Architecture for Motion Planning
with Nonholonomic Robots," Proc. International Conference on Robotics
and Automation, Nagoya, Japan, 1995.

D. McDermott and J. Hendler,Planning: What it is, What it could be, In-
telligence, 76, 1996.

D. Musliner, J. Hendler, A. Agrawala, E. Durfee and J. Strosnider, The
Challenges of Real-Time AI, Computer, 28(1), January, 1995.

D. Nau, K. Erol, and J. Hendler, "HTN Planning: Complexity and Ex-
pressivity" Proc. 12th Natl. Conf. on Artificial Intelligence (AAAI-94),
Seattle, WA. August 1994.

Y. Qu and S. Kambhampati. "Learning control rules for expressive plan-
space planners: Factors influencing the performance." Current trends in
AI Planning, IOS Press, 1995.

K. Stoffel, and J. Hendler, "Parka on MIMD-Supercomputers," in J. Geller
(ed.) Parallel Processing in AI, 1996

K. Stoffel, J. Hendler and J. Saltz, "Parka on MIMD-Supercomputers," 3rd
International Workshop on Parallel Processing in AI, Montreal, Aug.,
1995.

L. Spector and J. Hendler, "The use of supervenience in Dynamic-World
Planning," Proc. of the 2nd International Conference on AI Planning
Systems, June, 1994.

R. Tsuneto, K. Erol, J. Hendler, and D. Nau "Commitment Strategies in
Hierarchical Task-Network Planning", Proc, Thirteenth Natl. Conf. on
Artificial Intelligence (AAAI-96)", Portland, OR August 1996.

20

